L’editing incontra l’epigenetica

lucine crisprCorreggere tre malattie genetiche senza cambiare neppure una lettera del DNA. Può sembrare impossibile ma per riuscirci è bastato far incontrare le due tendenze più calde della ricerca in biomedicina. Una è la tecnica CRISPR, che consente di intervenire in modo mirato sui geni bersaglio grazie all’utilizzo di una macchina molecolare programmabile. L’altra è l’epigenetica, ovvero lo studio delle modificazioni chimiche che influiscono su accensione e spegnimento dei geni anziché sulla successione delle loro lettere. Da questa unione è nato un approccio che può essere chiamato editing epigenetico, perché le correzioni sono precise e puntuali come nella lavorazione editoriale di un testo (l’editing appunto), e perché avvengono a un livello che sta al di sopra di quello genetico (epi-genetico). Continua a leggere

Rec-Stop-Play: CRISPR diventa un registratore biologico

biological recorder

Con i normali registratori vocali basta premere il tasto Rec per avviare la registrazione, Stop per fermarla, Play per ascoltare. Ora un gruppo della Columbia University ha ideato un sistema per fare qualcosa del genere nei sistemi viventi, registrando i cambiamenti che avvengono dentro e intorno alle cellule. Il nuovo registratore biologico si chiama Trace e ci aiuterà a studiare quello che avviene in habitat aperti come il mare, o difficilmente accessibili come l’intestino dei mammiferi. Al posto della musica o delle voci, si registrano le tracce lasciate dalle fluttuazioni molecolari, che riflettono l’andamento di particolari vie metaboliche, gli alti e bassi dell’espressione genica, le relazioni tra le cellule di una popolazione. Come supporto, invece delle vecchie bobine, c’è il DNA. Sequenziarlo, alla fine, equivale a riascoltare la registrazione. Ma come si fa a incidere il nastro? Continua a leggere

CRISPR e oltre, il video di Nature Methods

Prima abbiamo imparato che il sistema di editing CRISPR-Cas9 taglia il DNA per modificarlo, e questa è la ricetta classica, evergreen. Poi abbiamo scoperto che è possibile trasformare una lettera in un’altra senza tagliare, grazie ai nuovi correttori di basi, che rappresentano l’ultima tendenza. Ma la cassetta degli attrezzi di CRISPR è molto più ricca e variegata. Esistono varianti con le forbici disattivate, ma accessoriate con altri componenti utili allo studio del genoma. Può trattarsi di attivatori della trascrizione, per aumentare il livello di espressione del gene scelto come bersaglio. O di repressori della trascrizione, per silenziarlo temporaneamente. Oppure di proteine fluorescenti per visualizzare l’architettura tridimensionale dei cromosomi. I dettagli tecnici sono spiegati in questo poster di Nature Methods. Ma non perdetevi il video di animazione che lo accompagna: “Ciò che è stato ottenuto finora potrebbe essere solo la punta dell’iceberg. La rivoluzione di CRISPR non è ancora finita”.

 

La matita al posto delle forbici. CRISPR corregge il DNA senza tagliare

MUTATION

Non chiamatelo taglia-incolla. Il sistema CRISPR si è evoluto, e per correggere le mutazioni ora non ha più bisogno di tagliare. Due lavori, pubblicati rispettivamente su Nature e su Science, annunciano l’arrivo di due nuove varianti di questa piattaforma tecnologica per l’editing genomico. Si tratta di veri e propri correttori automatici di refusi (“base editor”), che prendono il posto delle forbici molecolari della versione classica di CRISPR. La differenza principale fra le due nuove varianti presentate oggi è che una lavora sul DNA, introducendo cambiamenti duraturi nel genoma, mentre l’altra interviene sui suoi trascritti di RNA, con effetti reversibili. In comune hanno la strategia di fondo: quando identificano una lettera sbagliata ne sistemano delicatamente gli atomi cambiandone l’identità. La sequenza insomma viene corretta senza bisogno di recidere, e senza le imprecisioni che si verificano quando si attiva il macchinario naturale di riparazione cellulare. Il nuovo approccio surclassa in efficienza le procedure alternative e consente interventi ad alta fedeltà con un tasso minimo di errori. La speranza, dunque, è che in futuro questi convertitori di lettere possano essere utilizzati per riparare le mutazioni puntiformi che causano molte gravi malattie umane. Continua a leggere

CRISPR tuttofare: ora pedina e ripulisce l’RNA

zhang

Finora avevamo imparato che CRISPR serve a trovare un gene difettoso, tagliarlo e cambiarne la sequenza, magari per spegnerlo del tutto. Ma se invece volessimo evitare alterazioni permanenti e procedere in modo più prudente? Si potrebbe lasciare intatto il gene incriminato, intercettando e distruggendo i messaggi di RNA con cui impartisce ordini sbagliati alle cellule malate. Così sarebbe più facile tornare indietro, se necessario. La buona notizia è che CRISPR è un sistema tuttofare e riesce bene anche in questo compito. Uno dei padri della tecnica, il cinese naturalizzato americano Feng Zhang, ha dimostrato su Nature di poter intervenire in modo efficiente sull’RNA dei mammiferi, e anche delle piante, eguagliando e superando le prestazioni dell’approccio usato in precedenza a questo scopo (RNA interferenza). Insomma CRISPR si tiene stretta la sua professione ufficiale, come correttore di bozze del DNA, ma si è trovata anche un secondo impiego. Lo smaltimento differenziato dell’RNA.

Continua a leggere

La prima volta di Londra. L’altra via all’editing degli embrioni

embrioni UK.docx

Sono i primi embrioni umani geneticamente editati in Europa a comparire nella letteratura scientifica. Ma rispetto agli esperimenti cinesi e a quello più recente effettuato negli Stati Uniti, presentano una differenza fondamentale. Il lavoro appena pubblicato su Nature non rientra in un progetto per la terapia genica embrionale. Il gruppo del Francis Crick Institute di Londra, infatti, non si è dato come scopo la correzione di una mutazione legata a qualche malattia genetica, ma l’accrescimento delle conoscenze relative allo sviluppo embrionale. Perciò abbiamo chiesto a uno dei firmatari dello studio di spiegarci obiettivi e risultati. Alessandro Bertero ha 29 anni e ha contribuito a ottimizzare la tecnica usata da Kathy Niakan e colleghi quando era dottorando a Cambridge. Ci ha risposto via skype dall’America, dove continua a lavorare sulle cellule staminali embrionali come postdoctoral fellow all’Università di Washington.  

Continua a leggere